
NASA-CR-193051

PROCEDURAL REASONING SYSTEM

USER GUIDE

Amy L. Lansky

Artificial Intelligence Center
SRI International

Menlo Park, CA 94025

July 19, 1985

" /< - F,7_

(NASA-CR-193051) PROCEDURAL

REASONING SYSTEM USER GUIDE

Interndtionol Corp.) 3B p

(SRI

N93-72546

Unclas

Z9161 0163065

Contents

1 General Overview

1.1 System Structure

1.2 User Files

4

2

4

4

Getting Started 6

The Menu System 7

3.1 Lower Level Menus 8

3.1.1 EDIT 8

3.1.2

3.1.3

3.1.4

3.1.5

LOAD I0

RUN II

SAVE 11

TRACE 12

Processes File: YOUR-APPLICATION-PROCESSES. lisp 13

4.1 Meta-Level Processes,Actions 17

Database File: YOUR-APPLICATION-DATA-BASE. lisp

User Functions: YOUR-APPLICATION-FUNCTIONS. lisp

Running A System: The RCS system

5

6

7

A Running the Robot Simulator

B Lisp Machine Packages

C Variable Usage

D Default System Processes

E Sample Processes

18

18

19

22

24

25

27

32

This document is designed to introduce users to SRI International's Procedural Rea-

soning System (PRS) t on the Symbolics 3600. The user should have some rudimentary

knowledge of the Lisp Machine, but even without it, should be able to muddle through

with the directions given below and some experimentation. The user should also al-

ready be familiar with the concepts behind procedural logic (see the IJCAI-85 paper,

"A PROCEDURAL LOGIC," by Georgeff, Lansky, and Bessiere). Don't be afraid to

ask someone for help! 2

1 General Overview

The Procedural Reasoning System (PRS) is a framework for describing procedural

forms of knowledge, and executing those procedures in a very flexible, reactive way.

By procedural knowledge we mean knowledge about the consequences of performing

actions in a specific way. For example, we might know that a sequence of actions

of form - "put clothes in washer," "put soap in washer," "turn washer on," "wait 45

minutes" - will achieve a goal of form "clean the clothes." Much of people's knowledge

about the everyday world is encoded in procedures such as this one - perhaps most of

our knowledge.

In order to use the PRS system, a user specifies domain knowledge in either pro-

cedural form or in terms of facts or beliefs placed in an updatable, nonmonotonic

data base. Those pieces of knowledge that are specifically procedural in nature are

sometimes referred to Knowledge Areas (KAs} or processes. Each piece of procedural

knowledge is represented within the system as a graphical network that encodes the

steps of the procedure. A procedure must also be associated with information stating

under what situations it may be used, as well as what it is useful for (i.e., a declaration

of what types of goals the procedure can be used to achieve, and under what situa-

tions it is truly applicable). The user of the PRS system inputs all of this procedural

information via a graphical network editor called GRASPER II.

A typical example of a graphical process network is given in figure 1. It describes

a procedure to align all of the wheels on a ear. Each arc of the network is labeled with

a goal. Execution is meant to begin at the START node in the network, and proceeds

by following arcs through the network. Execution completes, achieving the purpose or

goal of the entire procedure, if execution reaches a finish node - a node with no exiting

arcs. If more than one arc emanates from a given node, any of the ares emanating from

that node may be transitted - only one of them need be transitted successfully. To

transit an arc, the system must find a procedure that achieves the goal labelling that

1Also known as Peritus II.

2Throughout this document, you will notice references to the acronym PES (Procedural Expert
System). This should be considered equivalent to PRS - it is the old name for the system.

(_? (I'P'IP_ L_v,_ee| ol'et)) E _ (I

(lP,_[-L.a_[[I. _lwl_**l-_:*_ (_whe*l))

Figure 1: A Simple Process Network

arc. If the system fails to transit an arc (which emanates from a node, say, n), then

other arcs emanating from n may be tried. If, however, the system fails to achieve any

of the goals on arcs emanating from n, the procedure as a whole will fail. For example,

since only one arc emanates from node N3 in figure 1, if an attempt to align any

given wheel fails, the alignment procedure for the entire car will have failed. The exact

notation for are labels and variable usage will be described later in this document.

As stated above, a user's domain description may also include a data base of facts

or =beliefs." Another type of information encoded within the PRS system is a set of

goals to be achieved. A complete domain description might thus consist of, say, a set of

process networks that describe procedures used for trouble-shooting a complex piece of

equipment, a data base that describes the structure of the equipment as well as current

failure indications, domain goals that seek the determination of a faulty module.

From a conceptual viewpoint, the PRS system operates in a relatively simple way.

At any particular point in time, certain goals are active in the system, and certain

facts or beliefs are held in the database. Given these extant goals and facts, a subset

of procedures (processes) in the system will be relevant. One of these processes will

then be chosen to execute. In the course of process network execution, new goals will
be formulated and new facts and beliefs may be derived and inserted into the data base.

At such points, new relevant processes are once again found and possibly invoked.

Onepoint that the readermayhavealreadynoticedis that PRSreactive, rather

than merely goal-driven. That is, processes may respond not only to goals, but also

to facts. For example, when a new fact enters the data base, the execution of the

currently active process network might be suspended, with a new relevant process

network taking over. One of the ways the system resolves which process to execute

at any given time is by using other meta-level process networks to help make such
decisions. These meta-level processes are manipulated and invoked by the system in

the same way as any other process. However, they respond to facts and goals of the

system itself, rather than just those of the application domain. Meta-level processes
are described in more detail in section 4.1 and in appendix D.

1.1 System Structure

It may be useful for the user to view the system as consisting of four logical components:

• The Data Base. The system data base stores all current beliefs within the

system. Part of the information supplied by a user of the PRS system is an

initial set of facts (beliefs) that should be put into this data base.

• The Goal Stack. The goal stack stores all current goals that are unresolved in

the system.

• Processes. Each PRS system is associated with a set of processes which describe

how to achieve particular goals, as well as how to infer and conclude specific
facts into the data base. Some of these processes may be relevant to a particular

domain. Others may be recta-level processes - they contain information about

the manipulation of the PRS system itself (for example, how to choose between

multiple relevant processes, or how to achieve a conjunction, disjunction, or

the negation of goals). Each PRS system contains processes coming from two
sources: those that are supplied by you, the user, (these constitute the application

"program'), and those processes that are a default part of every PRS system.

• The Interpreter. The system interpreter runs the entire system. When new

goals are pushed on the goal stack, the interpreter checks to see if any new

processes are relevant, and executes them. Likewise, whenever a new fact is

concluded to the database, the interpreter will perform appropriate truth main-

tenance functions and possibly activate new applicable processes.

1.2 User Files

Each user application system potentially consists of three files, which provide various

information to the different parts of the system described above. The first file describes

the set of user-defined application processes, the second contains a set of initial data

base facts, and the third is a file of user-defined functions that may be relevant to the

particular application. The contents of these three files, and how to build them, will

be described in sections 4, 5, and 6. We begin with the short description below, s

YOUR-FILESEI_VEI_: >USERNA_4E>YOUI_-APPLICATION-PROCESSES. lisp

The processes file is the heart of any user application and contains a set of

processes constructed using the GRASPER system. Section 4 describes exactly

how to set up a processes file.

YOUR- FILESERVER: >USERNARE>YOUR-APPLICATION-DATA-BASE. Iisp

The database file is an optional part of a user application. It contains an initial

set of facts that must loaded into the system database before the application can

be run.

YOUR-FILESERVF__: >USERNAME>YOUR-APPLICATION-FUNCTIONS. lisp

The functions file is also an optional part of a user application. It contains

any user-defined functions that are needed or useful for running an application.

These will typically include application-specific aetiona (see section 4.1), and

user-defined functions that aid you in running the application system. For ex-

ample, they may be macro operations for concluding or deleting specific facts

from the database, or pushing specific goals on the goal stack.

SThroughout this document, capitM letters are used for tokens that should be replace by user-speciflc
tokens. For example, YOUR-FILESEXVER:_USEI_AME_YOUR-APPLICATIOff-PP,OCESSES.lisp might
be replaced by ritter:>lamsky_foo, lisp.

5

2 Getting Started

Each user of the Lisp machine must have an account and file directory. See a Lisp

machine wizard to have one set up (at SRI, Mabry Tyson or Paul Martin). Once

your directory has been set up, log in by typing (login 'USERNA_E). 4 Notice that

the bottom banner of the Lisp Listener window includes a location that says USER:.

This is where the the current package name is given. Right now you are in the USER

package, s .

Now you are ready to load the PRS system. Type to the Lisp Listener window

(make-system "pes")

You will find that the system takes quite a long time to load up - perhaps 5 minutes.

The first thing loaded will be the GRASPER system, then the basic PRS system itself.

To transfer to the PRS window, you must now type SELECT-A. Whenever you transfer

to the PRS window in this fashion, the package notation in the bottom banner should

change to read PE5:. ° In general, you should always make sure you are in the PE5

package when using this system. Otherwise, unexpected forms of behavior may occur.

First time users of the system may at this point want to try out a run of the

PRS system on a demonstration application. Section 7 describes how to run the RCS

system, an application system that does fauit-diaguosis for a portion of the Reaction

Control System of NASA's space shuttle.

4In general, this document uses capital letters to denote an object that is replaced with some user-

specific token. In this c_se, for example, you might type (login ' ltnsky).

Sir this is not the case, type to the Lisp Listener window, (PKC-G070 'USER). For a more full de-

scription of packages on the Lisp Machine, see appendix B

6If this is not the case, type (PKG-GOTO 'PES) to the PRS window.

6

3 The Menu System

The PRS menu system is the interface through which a user creates a new application

system, loads an existing system, makes changes to a system, or runs a system. The

top level PRS menu is presented to you whenever you click once on any of the mouse

buttons in a PRS window. To leave this or any other menu, just move the mouse

cursor out of the menu region.

The top level menu contains the following commands (lower level menus will be

described in the next section):

• LOAD

Guides you through loading an application that has already been set up. In

order to load an application, you must know the names of its component files.

Usually there are three such files, the processes file, the database file, and the

function3 file. The way these files are created is described later in this document.

Note that it is also possible to load processes into the system directly from

GRASPER. In addition, some applications may begin with an empty database,

or may require no user-defined functions. Thus, none of these application files

are strictly necessary.

• EDIT

Serves as an interface for creating and editing any of the user application files.

• RUN

Helps you run a loaded application system. A lower level menu is provided for

concluding facts into the system database, or t)utting new goals on the goal

stack, and is thus a vehicle for getting system processes to respond and execute.

Ultimately, gUN will also be the interface for deleting facts, or evaluating user
defined functions.

SAVE

Enables you to save any processes file, database file, or functions file to the file

system.

TRACE

Enables you to turn tracing of process execution on and off. Right now, trac-

ing of process execution is purely textual. Eventually, processes will be traced

graphically in a special run-time interaction window.

• HELP

Prints documentation of these commands.

As a rule, usage of the PRS system will normally follow the following pattern:

• Creation of Application System: Use EDIT.

• Testing of Application System: Repeated use of the following cycle:

1. LOAD to load the system.

2. RUN to run the system.

3. EDIT to modify the system.

3.1 Lower Level Menus

In general, the PRS menu system should be self explanatory. However, a brief run-

down of the various lower level menus is in order, before we describe how to build the

user application files.

3.1.1 EDIT

If you click EDIT, you will be given the following menu of choices of how to create and

manipulate user application files:

CURRENT PROCESSES -- view current processes in GRASPER

CREATE PROCESSES -- create a new set of processes in GRASPER

APPEND PROCESSES -- merge a processes file into those in GRASPER

REPLACE PROCESSES -- place a new file of processes into GRASPER

DATABASE -- edit a file of data base facts

FUNCTIONS -- edit a file of lisp functions

HELP

The first four choices deal with the creation and manipulation of processes files. All

four switch you into the GRASPER context. When you wish to exit GRASPER and

return to the PRS window, just type SELECT-A, as usual. The use of GRASPER itself,

and instructions for how to create process descriptions will be discussed in section 4.

CURRENT PROCESSES :

By clicking on this choice, you will simply be switched into GRASPER and

be given the opportunity to view and/or edit whatever processes are currently
loaded there.

CREATE PROCESSES :

By clicking this choice, you will be given the opportunity to create a fresh pro-

cesses file in GRASPER. Any processes that were previously in GRASPER will

be overwritten (a warning message will tell you this). First you will be asked the

name of your intended processes file. If that file already exists, a warning mes-

sage will ask you if you just want to load that file, specify a new name, or abort.

8

Then you will be placed into G RASPER. At this point you may create or modify

processes as you wish. If you wish to save the current GRASPER context to the

file system, you may do so through the G RASPER menu options (see section 4)
or through the $AVE menu described below. In any case, GRASPER will always

retain its current set of processes, from one use of GRASPER to the next, unless

those processes are explicitly overwritten.

• APPEND PROCESSES :

This choice enables you to append or merge an already existing set of processes

specified in some file, in with those processes currently loaded into G RASPER.

Thus, you can build a set of processes not only by entering new process networks

within GRASPER, but also by merging several already constructed processes

files. First, you will be asked for the name of the file containing the processes to

be merged into GRASPER. If that file does not exist, you will be asked whether

you just want to proceed and enter GRASPER anyway, specify a new file name, or

abort. Next you will put into G RASPER, which now contains the new processes

you have just added, merged in with the old ones.

Notice that this operation is a true merge rather than a add/replace. Thus, if

a new process named P is merged in, and one named P already existed, some

unexpected things might happen. If the old and new versions of P are similar,

then they will be truly merged - i.e. the new resulting P will have the union of

edges and nodes of the two together, and edge names will be unioned as well.
If the two versions are completely different, GRASPER will probably bomb out.

Given this semantics for APPF2/D, if you really want to replace an old process P

with a new version in some file, it is best to delete the old version of P first,

before executing the append operation.

• REPLACE PROCESSES :

This choice enables you to totally replace the current contents of G RASPER with

an entirely new set of processes in some specified file. Any processes that were

previously in GRASPER will be overwritten (a warning message will tell you

this). First, you will be asked for the name of the file containing the processes to

be loaded into GRASPER. If that file does not exist, you will be asked whether

you just want to proceed and enter GRASPER anyway, specify anew file name, or

abort. Next you will put into GRASPER, which now contains the new processes

you have just loaded.

The final two choices in the r.nlT menu, DATABASEand FUNCTIONS, enable you to

create or edit a database file and a functions file, respectively. Both operate in basically

the same way. If you click DATABASEor FXlNCTIONS,you will be asked for the name of
the database or functions file you wish to create or edit. The PRS system will then

automatically switch to the ZMACS editor context for you, and load the specified file

into the editor window. To return to the PRS window when you are through, type

SELECT-A as usual.

3.1.2 LOAD

The LOAD menu isused to load the processes,data base, and functionsof an application

into the PRS system itself.The filescontaining this information should have already

been set up using the EDIT menu as described above.

After clicking LOAD, you will be given the loading menu with the following com-

mands:

INITIALIZE PROCESSES -- reinitialize the set of system processes

APPEND PROCESSES

INITIALIZE DATABASE

APPEND DATABASE

LISP FUNCTIONS

HELP

-- add some new processes into the system

-- reinitialize the data base with new facts

-- add some facts from a file into the data base

-- load a file of lisp functions

The first two commands help you load any processes files you may have built into

the PRS system. By load we mean, load each of the process networks, compile those

networks into an executable form, and perform an analysis on the invocation part

of each process to determine and record those situations under which that process

is applicable. Note that just because processes are loaded into GRASPER, does not

mean those processes are loaded in the PRS system. In a way, GRASPER may be

viewed as an editor, and the loading process may be viewed as compiling a program

for execution.

Normally, a user will click INITIALIZE PROCESSES to load a processes file. If

you click INITIALIZE PROCESSES you will be completely reinitializing the system's

internal set of processes - that is, any previously loaded processes will be discarded.

In contrast, APPEND PROCESSES has the same functionality as INITIALIZE PROCESSES

(it loads a processes file), except it add, those processes to those that may have already

been loaded. After clicking INITIALIZE PROCESSES or APPEND PROCESSES, you will

be given a menu with two items, FILE and GRASPER. If you click on FILE, you will

be asked for the name of the processes file you wish to load. That file will then be

loaded both into GRASPER as well as the PRS system itself. If you click on GRASPER,

those processes which are currently loaded into G RASPER will be loaded into the P RS

system.

To load/initialize the PRS data base, the user will click on the commands INI-

TIALIZE DATABASE and/or APPEND DATABASE. INITIALIZE DATABASE willcompletely

reinitialize the data base - all previously loaded facts will be discarded. Then the user

will be given a menu with two options, FILE or NULL DATABASE. If you click FILE, the

10

system will ask for the name of a file of data base facts to load, and will then proceed
to load them into the data base. If you click NULL DATABASE,the data base will be left

in an empty state. In contrast, APPEND DATABASEhas the function of simply adding a
file of facts to the current system data base. The user is asked for the name of a file

of data base facts, and that file is subsequently loaded into the data base.

Finally, to load a file of user-defined lisp functions, one would click on the command
LISP FUNCTIONS. You will be asked for the name of a file to load, and the system will

then load that file.

3.1.3 RUN

If you click RUN, you will be given a menu with commands FACT. GOAL. HELP. The
FACT and GOAL commands enable you to conclude facts to the database, and push

goals onto the system goal stack, respectively. By concluding a fact we mean adding

that fact to the PRS system data base and checking to see if it makes any processes
relevant. By concluding facts or pushing goals onto the stack, the user can get the

system running in response to the newly concluded fact or pushed goal. This menu

will be repeatedly given to you so that you can conclude new facts or push new goals.

Alternatively, you may wish to get your application system running by invoking
your own user-defined functions. These functions can be invoked directly in the PRS

window. Typically, such functions will be defined by you in such a way that they

conclude certain facts to the database, push goals onto the goal stack, etc. The pur-

pose of defining your own functions is merely as a convenience - they serve as macro

operations, so that you don't have to manually add a long set of facts and goals to

the system every time you wish your system to run. Section 6 discusses how to write

these functions. Ultimately, the RUNmenu will contain commands for deleting facts,

evaluating functions, or invoking other commands that might be useful for running an

application system.

3.1.4 SAVE

If you click on SAVEyou will be given a menu with the commands PROCESSES, DATABASE,

FUNCTIONS. If you click on PROCESSES, the set of processes currently in G RASPER will

be saved to the file that you specify. Similarly, if you click on DATABASEor FUNCTIONS,

the file that you have designated as your data base file or functions file within the
editor buffers will be saved to the file system. "r

7These last two operations (DATABASE and FUllCTI01$) have not yet been implemented.

11

3.1.5 TRACE

If you click TRACE you will be given a menu with commands NO-TRACING, TRACE-

ALL-PROCESSES, TRACE-SOME-PROCESSES. NO-TRACING turns off all tracing of pro-

cess execution. TRACE-ALL-PROCESSES turns back on tracing of allsystem processes.

TRACE-SOME-PROCESSES enables you to specifya subset of processes to be traced. The

system will,by default,trace allprocesses unless you otherwise specifyvia this TRACE

menu.

12

4 Processes File: YOUR-APPLICATION-PROCESSES.lisp

Each PRS system must include a set of processes supplied by the user. Normally,

process descriptions are stored within a "processes" file. Each process description

includes a network of labeled nodes and edges, as well as an invocation condition that

describes the situations in which that process is applicable and useful.

The system for inputting these process descriptions is GRASPER, a multi-purpose

program for creating networks of labeled nodes and edges, designed by John Lowrance

and Tom Strat. After constructing your process descriptions in GRASPER, you can

use the GRASPER output command (click GRAPH, then click OUTPUT) to store

them into the file of your choice. The SAVE menu can also be used to store the set of

processes currently in GRASPER to a file.

Being a general multi-purpose system, GRASPER has its own set of terminology

for referring to processes networks.* In G RASPER "lingo," a user file is called a graph

and consists of a set of ,paces. For our purposes, each GRASPER space will be a

process description. Thus, your entire "processes" file is really a GRASPER "graph"

that consists of a set of processes descriptions (or G RASPER spaces).

The GRASPER user interface is fairly straightforward, so you should just try

experimenting with it. 9 There are two menus, the one on the left for choosing what

type of object you wish to deal with (an entire graph, a space, a node, or an edge),

and the one on the right for choosing which operation you'd like to perform on that

object.

As stated above, each process description (or space) consists of a directed network

of labeled nodes and edges, as well as an invocation condition. To create a new process

description, proceed as follows. First, tell GRASPER to create a space (click SPACE,

then CREATE). It will ask you for a name for that space. The space may then be

associated with a VALUE. This is where you will store the invocation condition of a

process. To type in the invocation condition, you must edit the value of the space.

Click SPACE, then EDIT VALUE, and then type in the invocation part for tile process

you are creating, t0 The appropriate syntax for the invocation part of a process is as
follows:

'Eventually, we plan on building our own GRASPER-based facility whose interface will use termi-
nology more consistent with our own.

DIf you get stuck in GRASPER, try either SELECT G or ABORT or c-m-ABORT followed by
(GRASPER:gg). In general, SELECT G will always bring you to the GRASPER window.

I°GRASPER actually represents the VALUE of a space as a LISP association list. Thus, by typing in
the invocation part you are telling GRASPER that your space is associated with a key-value pair
with key-name IFCOCATIOli-PART.

13

<value of a process space> ::= ((INVOCATION-PAKT <invocation condition>))

<invocation condition> ::= <goal>

::= <fact>

::= <lisp predicate>

::= (AND <invocation condition> ...

<invocation condition>)

::= (OR <invocation condition> ...

<invocation condition>)

<goal> ::= (*goal (<goal-sym> <literal>))

<fact> ::= (*fact <literal>)

<lisp predicate> ::= (*lisp-predicate <any lisp predicate>)

<goal-sym> ::= !

::= ?

::= *

<literal> ::= (<predicate-name> <param> ... <param>)

::= (" (<predicate-name> <param> ... <param>))

<predicate-name> ::= <string>

<param> ::= <string>

::= <var>

<var> ::= $<string>

::= _<string>

::= _<string>

Note that a "string" parameter may be an atom, or even a lisp function call (which

may use variables). PRS variables come in three flavors: global variables, which are

prefixed by $; program variables, which are prefixed by _; and local variables, which

are prefixed by _. For an explanation of variable usage, see Appendix C. tn general,

only global variables are used in an invocation part, whereas all types of variables may

be used in the goal expressions labelling edges (see below).

14

As an example of an invocation condition, we might have the following:

((INVOCATION-PART (AND (*goal (! (" (P ix iy))))

(*fact (G $x baz))

(*lisp-predicate (LISTP ix)))))

It states that the particular process being specified is applicable precisely when a goal

of form (! (- (P $x $y))) is on the goal stack, and the fact (G $x baz) is in the

database, and the evaluation of the lisp predicate (LISTP $x) yields T (true).

Once you have typed in the invocation part of the process and made it the value

of the space, you may go on and create the process network. Each node must have

a unique name, and each edge is associated with a name that represents a goal. The

first node in the process network must be labeled START. It is also good practice to

label final nodes in the network with a name like END or FINISH. But any node that

is a sink (has no outgoing edges) is considered to be a final or terminating node.

Each edge in your graph is associated with a goal to be achieved, and the description

of this goal is stored in the edge name. The syntax of this goal description is as follows:

<goal expression> ::= (<edge-sym> <expression>)

<expression> ::= <literal>

::= <compound expression>

<compound expression> ::= (k <expression> ... <expression>)

::= (V <expression> ... <expression>)

<edge-sym> ::= <goal-sym>

::= =>

where <literal> and <goal-sym> are as defined above. For example, an edge might
be associated with a name of form:

(? (v (P $x ©y) (- (Q a b $x))))

Intuitively, the edge symbols !, 7, =>, * are each used to denote a different kind

of goal. The * symbol is used to denote a goal that is satisfied by any sequence of

states that represents performance of the prescribed expression. For example

(* (MOVE locl Ioc2))

would be satisfied by any sequence of states over which an object moves from location

locl to location loc2. The ! symbol is used to denote the achievement of the expres-

sion, i.e., it is satisfied by a sequence of states whose last state satisfies the expression.
For example,

15

(! (LOCKED doorl))

would be satisfied by any sequence of states in which the door is locked in the last

state. In contrast, the ? symbol is used for denoting a goal of testing the truth of the

given expression. For example,

(? (ACIDIC blob))

would be satisfiedby any sequence of states in which itisdetermined that blob was

acidic in the firststate. Fina{ly,=> isused to denote the goal of placing the given

expression as a fact in the data base. Itisthus satisfiedby a sequence of states ifthe

data base contains the given expression in the laststate of the sequence,tl

When your processes fileis loaded into the PRS system (using the LOAD menu),

your process descriptionsare "compiled." What this does isconvert the information

represented by a process network into a lispprogram which embodies the semantics of

that network. Each time the process isinvoked, this program isexecuted. To make

sure you have set up a process descriptioncorrectly,you may want to try compiling it

before you actually load itlater.To do this,type

(compile-ka 'SPACENANE)

to the GRASPER Listener window. To compile all of the spaces in the current

G RASPER graph, type

(compile-a11-kas)

to the GRASPER Listener. If you want to see the lisp code associated with your

process, type

(GET 'SPACENAI4E 'INTERPRETED-FORM)

Also, you can pretty-printany listby using the command

(grind-top-level (..the list..))

Finally,before you leaveG RASPER, itisgood practicetosave your process descrip-

tionsinthe filereferredto above asYOUR-FILESERVER: >USERNAME>YOUR-APPLICATION-

PROCESSES. llsp (c{ickGRAPH and then OUTPUT, and then type the name of your

processes Ale).

t lFor further information about the actual semantics of • process, please refer to the IJCAI-85 paper
entitled _A PROCEDURAL LOGIC" by Georgeff, L_nsky, and Bessiere.

16

4.1 Meta-Level Processes, Actions

As we have mentioned above, every PRS system includes as set of default system

processes which are loaded when the entire system is loaded. The file containing these

default processes isr:>pes>demo>default-processes.lisp, and the processes that

are found inthisfileare described indetailinappendix D. Most ofthe defaultprocesses

are recta-levelprocesses - i.e.they are processes which operate on goals and factsthat

pertain to the system itself,rather than just the application domain. The filealso

includes "pseudo" processes calledaction,.

Actions are simply processes with no body - i.e.they are not associated with a

network of nodes and edges. Whenever an action responds to a goal, the interpreter

executes a specified a lispfunction (rather than executing a process network as is

normally done). For example, one action in default-processes.lisp is <. It can

be invoked by a goal of form (! (< ix iy)) or (? (< $x $y)) and itsinvocation

resultsin execution of the normal lispfunction <, applied to the two parameters $x

and $y.

If you have written a lisp function which you would like executed in order to achieve

a goal, or if you wish a standard lisp function to be used to satisfy a goal, you may

create an "action process" in your processes file, as follows.

Like before, create a new space by first clicking SPACE and CREATE, and then supply

the name of the action. The value of the space, however, must be of a different form

than for a normal process definition. The syntax is as follows:

<value of an action space> ::ffi

((ACTION <lisp function name>) (INVOCATION-PART <invocation condition>))

where <invocation condition> isas defined before. After you have completed this

step, you are done. No nodes or edges should be placed in the space describing your

action.

17

5 Database File: YOUK-APPLICATION-DATA-BASE.lisp

This file contains all the facts that you wish loaded initially into the system database.

Each fact should be in lisp predicate form, for example: (P x y z). When your

database file is loaded, each fact in the file will be asserted. The assert command

inserts facts into the database without checking to see if they make any new processes

relevant. In contrast, the conclude command, in addition to adding the fact to the

database, also checks for new relevant processes. This command is described in the

next section.

6 User Functions: YOUK-APPLICATION-FUNCTIONS.lisp

This file should contain any functions which you wish to use as actions (see section 4.1),

or functions that you wish to use to make running your system easier. For example,

I use the file r:>pes>rcs>rcs-functions.lisp to define functions which start up

the RCS application system by concluding certain key facts into the database. The

conclude command not only adds these facts to the database, but also cheeks to see if

any new processes are relevant and if so, invokes them.

A conclude operation may be utilized within a user-defined functions by including

a command of the following form:

(send *system-data-base* :conclude '(...fact...) nil)

Note that a process edge labeledby a goal expression ofform (=> <expression>) also

represents the act of concluding that expression into the database. It thus can result

in the execution of new relevant processes.

Another way to start up an application system issimply to push a goal on the

system goal stack. Ifyou want to definea function that pushes specificgoals on to the

goal stack,use the following command:

(send *system-goal-stack* :push '(... goal ...) nil nil)

Of course, the RUN menu can also be used to conclude facts and push goals on

the goal stack - the option of utilizinguser-definedfunctions isprovided merely as a

convenience.

18

7 Running A System: The RCS system

Once you have set up all your files correctly, running your system is a fairly simple

process. [will now go through the list of things one might do to run an already set up

system, from login, onward. These instructions may thus be used by those of you who

wish to run a system that has already been set up. I will describe the process of running

a system by actually leading you through running the RCS (Reaction Control System)

application, which performs fault diagnosis for a subsystem of the space shuttle. New

users of the system might want to follow these steps as a trialusage of the system.

I. Login. Type (login 'USERN.LqE).

2. Load the PRS system. Type (make-system Npes"). Answer yes to any

questions that might be asked. This may take a few minutes. Then type SELECT-

A to transfer to the PRS window.

3. Load the application. To get the top levelPRS menu presented to you, click

on any mouse button. Then clickLOAD. We willbegin by loading the processes file

for the RCS system. Click INITIALIZE PROCESSES, then clickFILE, and type in

the filename r:>pes>rcs>rcs-processes, lisp. When the processes have allbe

loaded and compiled, you are given the loading menu again. Now clickINITIAL-

IZE DATABASE, then clickFILE, and type the filename r:>pes>rcs>rcs-data-

base. lisp. When database loading isdone, you willbe given the loading menu

again. FinallyclickLISP FUNCTIONS and type the filename r:>pes>rcs>rcs-

functions, lisp.

4. Viewing processes. At this point, you may want to look at you application

processes.This can be done by clickingEDIT in the top levelmenu, then CURRENT

PROCESSES. You willthen be placed intoGRASPER, and can look at any process

description you like,by clickingSPACE, then SELECT, and then clicking the

desired process name on the menu presented.

5. Set up your window for running the system. You can run your system

in any PRS window. Ifyou do not care whether you are able to view the RCS

processes while you execute them, just return to the PRS window by typing

SELECT-A and go on to the next step.

The other alternativeisto scaleclown the PRS window and place iton top of the

GRASPER window, with enough room to view the processes. (We are currently

working on a nice execution monitoring system that willdo this automatically

for you, and even highlight process edges as they are traversed.) To get thisall

set up right,proceed as follows.Go back to the PRS window (type SELECT-A).

Do a DOUBLE-CLICK on the rightbutton, then clickEDIT SCREEN followed by

19

RESHAPE. You will then be given a circular icon which you should place over the

PRS window and click (this indicates which window you are going to reshape).

Then you will be given a window corner. Place it where you would like the upper
left-hand corner of the PRS window to be, and rubber band it to the size window

you like, and finish by clicking the button. Then click EXIT in the EDIT SCREEN

menu.

If you later wish to expand this window to its normal size, once again do a

DOUBLE-CLICK on the right button, click EDIT SCREENfollowed by EXPAND

'#I_D0'#, and then place the circular icon over the PRS window and click. Follow

this once again by a click on EXIT in the EDIT SCREENmenu.

6. Run the system. You have two choices of how to get the system running -

through the RUN menu or by invoking an already defined user function. We

present the menu system method first.

Click RUN in the top level PRS menu. You must now conclude four facts to get
the RCS system going. This is because the main RCS procedure which performs

diagnosis for this subsystem of the space shuttle is activated by various alarms
in the shuttle. Each of the four facts you conclude to the system represents an

alarm that has gone off. Because the invocation part of the top level diagnosis

procedure matches on these facts, it will start executing after the fourth fact is

added. The processes that respond to the first three facts (as well as the fourth)

are meta-hvel system processes that perform data base update and maintenance.

Proceed now by entering the four facts listed below. For each fact, click FACT on

the RUNmenu, and type in the fact.

(LIGHT RCS- JET)

(ALARM BACKUP-CW)

(FAULT RCS.1 RCS THR. I.1 JET)

(JETFAIL-INDICATOR ON MIV.I.I.I)

Afteryou have concludedthe lastfact,the main diagnosisprocess,JET-FAIL-ON

should get firedup. Lots of textualtracingwillhe presentedto you. (We are

currently working on a tracing facility that is more graphical in nature.) At some

points, questions will be asked. Type YES or NO, as asked. If you are asked for

the pressure of some meter, just type an integer number. (Something between 0

and 500 is appropriate.) You may also be asked to type in a particular message

or string of your choice, in quotes. Eventually, the diagnosis will finish and the

RU_Imenu will be presented again.

If you want, you can experiment with the tracing mechanism by clicking TRACE

in the top level menu, and then clicking NO-TRACIN(] or TRACE-SOME-PROCESSES

and providing a subset of processes to trace. Then try running the system again.

2O

(Unlessyou reinitialize the database totally again, you need to conclude only one

of the four facts given above to get the system fired up again - the facts were

never deleted from the previous round.)

As mentioned above, an alternate way of getting the system going is to use a

user-definedfunction.Type to the PRS window: (RCSINIT 'RCS.l 'THR.t.l

'MIV.I.I.t).This functionisdefinedinr:>pes>rcs>rcs-functions. lisp and

loads allfour of the factsdescribedabove. To load only one fact,you can

use the function(REPROMPT).To deleteallfourfacts,type (RCSDELETE 'RCS.t

'THR.I.I 'MIV.I.I.t).

7. Logout. To logoutfrom the lispmachine, type (1ogout) to any PRS or Lisp
Listenerwindow.

21

A Running the Robot Simulator

The SRI Robot was desio_ned by Start Reifel and the graphical simulator by Leslie Pack

Kaelbling. To run the PRS robot application system, you must also have the robot
simulator loaded. The whole process of setting up both systems is as follows:

1. Go to the Lisp Listener window (type SELECT-L). Make sure you are in the user

package by typing (PKG-GOT0 'USER).

2. Load the simulator: (make-system "robot-sire'). Type yes to any questions

you may be asked.

3. Type SELECT-R to get to the simulator. You will be given a corner of the simu-
lator window. Rubber-band it to the size you want, but be sure that you fill at

most 2/3 of the screen.

4. ClickREAD FILE and loadLeslie'smaze which isinr:>pack>rex>maze2. lisp.

5. ClickCHANGE WORLDS and typema.ze2.

6. Scalethe maze tofitinthe window. (ClickSCALE and readthe instructions.)

7. Make sure the attributesof the robot simulatorwindow are setto "letoutput

happen" (Clickdoublerighton the mouse, thenclickATTRIBUTES, then clickon

Let it happen and then Do it).

8. ClickSTART SIMULATION, and when askedfora userfunctiontype:

(SET-VELOCITY 20 20). Your command shouldbe echoedinthecommand mon-

itoringwindow ofthesimulator.Ifitisnot,repeatthiscommand.

9. Ifyou have not done so already,now loadthe PRS system. Go back tothe Lisp

Listenerwindow (SELECT-L) and type (make-system "pesm). Answer yes to

any questionsthat might be asked. Finally,type SELECT-A to go to the PRS
window.

i0. Once your are in the PRS window, make surethe currentpackage indicatorin

the bottom banner readsPES:. Ifitdoes not,type (PKG-GOT0 'PES).

I1. Now reshape the PRS window to fit in the space left over by the robot simulator
window. They should not overlap. Do a DOUBLE-CLICK on the right button,

then click F.2IT SCREEN followed by RF_HAPE. You will then be given a circular

icon which you should place over the PRS window and click (this indicates which

window you are going to reshape). Then you will be given a window comer.

Place it where you would like the upper left-hand comer of the PRS window to
be, and rubber band it to the size window you like, and finish by clicking the
button. Then click EXIT in the EDIT SCREEN menu.

22

12. In the PRS window type (SETq USER:*DEBUC_ING* NIL).

13. Now load the robot system. To get the top level PRS menu presented to you,

click on any mouse button. Then click LOAD.Click II_ITIALIZE PROCESSES, then

click FILE, and type in the file name r:>pes>robot>robot-processes.lisp.

When the processes have all be loaded and compiled, you are given the loading

menu again. Now click It_ITIALIZE DATABASE,then click hULL DATABASE(we

start with an empty data base for this application). Then you will be given

the loading menu again. Finally click LISP FUNCTIONS and type the file name

r : >pes>robot>robot-funct ions. llsp.

i-I. Get the system running by clicking on RUN in the top level menu. Then dick

FACT and type in the fact (MAZEREAD¥).

That should do it! You can stop the simulation by typing control-ABORT in the

PRS window. You can also play with turning tracing on and off by using the TRACE
menu.

23

B Lisp Machine Packages

Lisp Machine packages can be somewhat confusing, so a brief word is in order. Packages

are the way name-spaces are partitioned on the Lisp Machine. At any point in time, the

machine is in a specific package. All tokens that you type to a window are considered

prefixed by the current package name. At any point in time, you can see what package

you are in by looking at the bottom banner of the window. The default package that

is usually in force is USER. To switch to a different package, use the command

(PKG-GOTO '<package name>)

When any lisp file is loaded, it is loaded into some specific package. The package

into which a file is loaded is determined by the header banner of that file. All of the

PRS system files are loaded into the PES package. What this means is that every token

in the PRS system files is considered to be prefixed by the string PES:. This is true
for function and variable names, as well as any other token, including quoted atoms.

What are the consequences of all of this? You mu_t be in the PES package when

you use this system. If you are, things should work fine. If you aren't, things will

probably go awry!!

24

C Variable Usage

The design of the PRS system has attempted to stress the use of logical variables -

i.e. variables as they are used in PROLOG. Such variables can never be rebound.

Unfortunately, in writing PRS processes we have found the need to use variables with

other kinds of semantics - in particular, variables that have a semantics similar to what

is found in standard programming languages. As a compromise, we have come up with

three kinds of variables in the PRS system, all of whose semantics can be mapped onto

a standard logical variable semantics, but whose usage differs. Global variable, are just

like logical variables in the classic sense. Local variable, are like global variables, but

have a limited _extent" or "lifetime." Program variable, function much like normal

variables in standard programming languages.

In general, one should use global variables, wherever possible. They are prefixed by

$ and may have only one binding during the lifetime of a particular process instance.

Note that each instantiation of a process is associated with its own global variables.

Thus, the global variables in each recur, ire call of the same process will be distinct.

Also note that for any kind of variable V, if the parameter of a goal expression on

some edge is bound to V, V will be bound to the corresponding formal variable in the

invocation part of the process that is invoked to achieve that goal (i.e. goal parameters

are passed via pass-by-reference rather than pass-by-value).

If you must rebind a variable over the course of a process execution (for example,

in a loop), you have the choice of using g variables (local variable,) or _ variables

(program t,a/iable,). _ variables may be rebound from arc to arc and retain their value

between arcs. Whether or not the value of an @ variable is rebound or not will depend

upon context. A goal of form (! (= _x @y)) will, by default, bind the value of _x

to be equal to the current value of _y if it has one. If _y was not bound and _x was

bound when this goal occurred, ©y would be bound to the value of _x. If both were

unbound, they would nevertheless be "bound together," and if one achieved a binding

later, the other would be bound to that binding as well. A goal of form (? (= _x

©y)) simply tests to see if the bindings of the two variables are equal.

In contrast to @ variables, _ variables are more like global variables, except their

binding is meaningful only on a per-edge basis. In other words, on each edge, the

appearance of a Z variable is similar to the creation of a fresh new global variable.

The binding of a Z variable will not carryover from one edge to the next. However,

if multiple goals are invoked on the same edge, the same variable and binding will be
used for all of them.

Clearly, both global and local variables are logical variables in the classic sense -

they cannot be rebound. In order to handle the semantics of © variables consistently

within this logical-variable framework, the binding of program variables may be viewed

25

as a particular "aspect" or slot value of an associated global variable. Whereas global
variables can be bound only once, it is natural to think of the value of its slot as being

rebindable. For example, one could imagine a global variable as a box. Each global

variable is a specific box and can never be rebound to another box, but different objects

may be placed in the box at different points in time.

26

D Default System Processes

The processes described below are a default part of every PRS system and are located

in the filer:>pes>demo>default-processes. lisp. They may be subdivided into two

categories,recta-levelprocesses, and actions. Moreover, some of these actions are

actually .specialactions - i.e.they are meta-level actions whose associated functions

can manipulate the internalsof the PRS system.

The meta-level processes are as follows:

• s-basic

This process helps choose which process to execute from several that match a

given goal. Ithas an invocation part of form:

(AND (*GOAL (? (HOW-TO-REACH $GOAL $RELEVANT-KAS)))

(*LISP-PREDICATE (NOT (FACTS-AMONG? $RELEVANT-KAS))))

• s-select-fact

Ifboth factsand processes match a goal,thisprocess makes sure that facts are

used first.Ithas an invocation part of form:

(AND (*GOAL (? (HOW-TO-REACH SGOAL SRELEVANT-KAS)))

(*LISP-PREDICATE (FACTS-AMONG? $RELEVANT-KAS)))

• s-data-base-management i

A process that handles data base management. It isused when a fact iscon-

cluded, but no new processes are relevant nor are there any goals itachieves. It

has an invocation part of form:

(AND (*GOAL (? (HOW-TO-USE $STATEMENT

SACHIEVED-GOALS $NEW-RELEVANT-KAS)))

(*LISP-PREDICATE (NULL SACHIEVED-GOALS))

(*LISP-PREDICATE (NULL $NEW-RELEVANT-KAS)))

• s-data-base-management2

A process that handles data base management. Itisused when a factisconcluded

and there are goals itachieves. Ithas an invocation part of form:

(AND (*GOAL (? (HOW-T0-USE $STATEMENT

$ACHIEVED-GOALS $NEW-RELEVANT-KAS)))

(*LISP-PREDICATE (NOT (NULL $ACHIEVED-GOALS)))

• s-dat a-base-management3

A process that handles data base management. Itisused when a factisconcluded

and itdoesn't achieve any goals,but there are new relevantprocesses. Ithas an

invocation part of form:

27

(AND (*GOAL (? (HOW-TO-USE $STATEMENT

SACHIEVED-GOALS $NEW-RELEVANT-KAS)))

(*LISP-PREDICATE (NULL $ACHIEVED-GOALS))

(*LISP-PREDICATE (NOT (NULL $NEW-RELEVANT-KAS)))

(*LISP-PREDICATE

(EQUAL-TOP-OF-STACK?

(LIST '? (LIST 'HOW-TO-USE $STATE_ENT

$ACHIEVED-GOALS

SNEW-RELEVANT-KAS)))))

clean-up-mechanism

A process that does data base management. In particular, it is intended to invoke

certain truth maintenance functions, including updating of time-sensitive data.

it has an invocation part of form:

(*GOAL (! (CLEAN-UP $STATENENT)))

s-select-ka-1

ifa new fact makes exactly one process relevant,thisprocess invokes it.It has

an invocation part of _rm:

(AND (*GOAL (! (SELECT-KA SN-RELEVAHT-KAS)))

(*LISP-PREDICATE (EQUAL I (LENGTH SN-RELEVANT-KAS))))

• user-question

This process asks the user whether a given fact is true or not, and inserts the truth

or falsity of that fact into the database. Also, if the user responds "WHY," an

action will be invoked that places the user into the Lisp Machine data inspector.

This process has an invocation part of form:

(*GOAL (! (USER-QUESTION SFACT)))

The actions within default-processes, lisp are given below. For each action

we give the name of the llsp function with which it is associated, and its

invocation part.

• process-ka

Lisp function: process-ks (a function in the intepreter)

Invocation part: (*GOAL (! (PROCESS-KA SKA-NAME SGOAL-EXPRESSION)))

• process-ks-fact

Lisp function: process-ks-fact (a function in the intepreter)

Invocation part: (*GOAL (! (PROCESS-KA-FACT SKA-NAME $ENVIRONI,_ENT $ID)))

28

• process-achieved-goals

Lisp function: process-achieved-Noah (a function in the intepreter)

Invocauon part: (*GOAL (! (PROCESS-ACHIEVED-GOALS $ACHIEVED-GOALS)))

• action?

Lisp function: actionf (a function in the intepreter)

Invocauon part: (*GOAL (! (ACTION? $KA-NAME)))

• assert

Lisp function: assert(a function in the intepreter)

[nvocat,on part: (*GOAL (! (ASSERT $FACT)))

• print-list

Lisp function: print.list(a function in the intepreter)

Invocatmn part: (*GOAL (! (PRINT-LIST TLIST)))

• why

Lisp function: ezplanation (a function in the intepreter)

Invocation part: (*FACT (SAIl} USER WHY))

• print

Lisp function: print (the usual lisp function)

Invocation part: (*GOAL (! (PRINT $l)))

• listp

Lisp function: iistp (the usual lisp function)

Invocation part: (*GOAL (! (LISTP TX)))

• atom

Lisp function: atom (the usual lispfunction)

Invocation part: (*GOAL (! (ATOM TX)))

* null

Lisp function: null (the usual lispfunction)

Invocation part: (*GOAL (! (NULL $][)))

• <

Lisp function: < (the usual lispfunction)

Invocation part: (OR (*GOAL (! (< TX TY))) (*GOAL (? (< Tx SY))))

• (=

Lisp function: <_ (the usual lispfunction)

Invocation part: (OR (*GOAL (! (<= $X $Y))) (*GOAL (7 (<= Sx $Y))))

29

• >

Lisp fimction: > (the usual lisp function)

Invocation part: (OR (*GOAL (! (> $X $¥))) (*GOAL (7 (> $X $Y))))

• >--

Lisp function: _> (the usual lisp function)

Invocation part: (OR (*GOAL (! (>= $X SY))) (*GOAL (7 (>= $X SY))))

The specialactions (meta-level actions) within default-processes.lisp are

given below.

• s-" -naf

This process implements negation as failure for both database facts and goals.

Lisp function: special-hal (a function in the PRS interpreter)

Invocation part:

(AND (*GOAL (7 (ItOW-TO-RF..FOR.qULATE SGOAL)))

(*LISP-PREDICATE (EQUAL-TOP-OF-STACK7

(LIST '? (LIST 'HOW-TO-REFORMULATE SGOAL))))

(*LISP-PREDICATE (EQUAL '' (CAADR $GOAL))))

• s-&

This process is used to achieve a conjunction of goals.

Lisp function: special-and (a function in the PRS interpreter)

Invocation part:

(AND (*GOAL (7 (ROW-T0-REFORMULATE SGOAL)))

(*LISP-PREDICATE (EqUAL-TOP-OF-STACK?

(LIST '? (LIST 'HOW-T0-REFORMULATE $GOAL))))

(*LISP-PREDICATE (EQUAL '_ (CAADR SGOAL))))

• s-V

This process isused to achieve a disjunctionof goals.

Lisp function: special-or(a function in the PRS interpreter)

Invocation part:

(AND (*GOAL (? (HOW-TO-REFORMULATE SGOAL)))

(* LISP-PREDICATE (E{_UAL-TOP-OF-STACK?

(LIST '7 (LIST 'HOW-TO-REFORMULATE SGOAL))))

(*LISP-PI_DICATE (EQUAL 'V (CAADR $GOAL))))

• s-=

This is a special process for doing equality. The code differentiatesbetween

equality for goals of form ! and ?. In the case of a goal of form (! (= ...)),

the code triesto force equality (itislikean assignment statement). In the case

3O

of a goal of form (? (= ...)), the code tests for equality.

Lisp function: special-equalit_t (a function in the PRS interpreter)

Invocation part:

(OR (*GOAL (? (= SX SY)))

(*GOAL (! (= SX $Y))))

• pushgoal

This process pushes a goal on the goal stack and sets a parameter to indicate

whether or not the goal was successfully achieved. If it was successful, the envi-

ronment is updated accordingly.

Lisp function: special-p.shgoal (a function in the PRS interpreter)

Invocation part:

(*GOAL (! (PUSHGOAL $GOAL $SUCCEED)))

31

E Sample Processes

On the next few pages we have included a set of sample process descriptions for your

perusal. The invocation part associated with each process is given in the GRASPER
Listener window.

32

X

' I

_j

• _ _"

• i

A
A

II

A
A

1.-

v

ee

c,..x _

' _ _ __ _ _ _ _'_ _'_, o

i
0

E

llm<_
I I_ _ _ _ _

_- _ _

!

o,._++=z+L";...++ <,,.._ <_m++
_z - _

___c_ ++__ ,.,, =

M

+ i
!

M

+
P_

._io

